SAMPLE Security Assessment Report

[image: image1.jpg]
ECR Security
Assessment Report
For:
SAMPLE
Revision History
	Date
	Version
	Description
	Author

	06/10/2019
	1
	Final report
	Brian Milliron

	
	
	
	

	
	
	
	

Table of Contents
Revision History

pg. 2
Executive Summary

pg. 4
Objective

pg. 6
Assessment Scope

pg. 6
Assessment Tools

pg. 6
Target Systems

pg. 7
Results Summary

pg. 7
Severity 5 (Critical) Findings

pg. 8

Finding 1
Raw API Exposed

pg. 8

Finding 2
Password Hashes Exposed

pg. 11

Finding 3
Weak Password Hashing Algorithm
pg. 12
Severity 4 (High) Findings

pg. 13

Finding 4
Cleartext Authentication

pg. 13

Finding 5
Cross-Site Scripting

pg. 15

Finding 6
Auth Cookie Missing Http Only Flag
pg. 16
Severity 2 (Low) Findings

pg. 17

Finding 7
Debug Console Enabled

pg. 17
Vulnerability Classifications

pg. 18
Executive Summary
Between 6/3/19 and 6/7/19, Brian Milliron conducted a security assessment of the Conglomo web application. Several serious vulnerabilities were identified which could compromise the confidentiality, availability, and integrity of the application, as well as user accounts and the personal data of users.
Summary of Findings
	Finding 1:
	Raw API Exposed

	Severity Level:
	5

	Disposition:
	Open

	Impact to Business:
	Non-privileged users can perform functions which should be restricted to admins

	Finding 2:

	Password Hashes Exposed

	Severity Level:

	5

	Disposition:

	Open

	Impact to Business:
	Password hashes are exposed to all users

	Finding 3:
	Weak Password Hashing Algorithm

	Severity Level:
	5

	Disposition:
	Open

	Impact to Business:
	Weak password hashes enable recovery of original password and unauthorized access

	Finding 4:
	Cleartext Authentication

	Severity Level:
	4

	Disposition:
	Open

	Impact to Business:
	Allows an attacker on the same local network to capture passwords

	Finding 5:
	Cross-Site Scripting

	Severity Level:
	4

	Disposition:
	Open

	Impact to Business:
	Allows an attacker to inject malicious code into the session of another user

	Finding 6:
	Auth Cookie Missing Http Only Flag

	Severity Level:
	4

	Disposition:
	Open

	Impact to Business:
	Allows an attacker to steal the authentication cookie and login session of another user

	Finding 7:
	Debug Console Enabled

	Severity Level:
	2

	Disposition:
	Open

	Impact to Business:
	Aids an attacker in gaining unauthorized access.

Vulnerability Severity Levels
	
	5
	4
	3
	2
	1

	Number of Findings
	3
	3
	0
	1
	0

Objective
The objective of the security assessment is to provide an assessment of the security posture of the Conglomo web application. This report helps by gauging issues found during the assessment against industry standards, corporate policy, and the knowledge of the assessors.
Assessment Scope
The security assessment was focused on the Conglomo web apllication hosted on the server at X.X.X.X. No testing was done on the server itself or supporting infrastructure. The results from this test are not intended to be an assessment of all applications, or entire infrastructure, and pertain only of those targets identified within this assessment’s scope. While changes to the infrastructure, application code, configurations and architectures may always be in progress, the assessment provided in this report only presents those issues which existed during the assessment period. Findings listed in this report are a snapshot of the issues discovered, which existed during the assessment period, and may not be current. Findings discussed in this document are representative of issues in general and may not list all instances of a specific issue. The assessment also did not perform any denial of service (DoS) attacks against the network, its subsystems, devices or applications in order to minimize the potential of interrupting operations.
Assessment Tools
A variety of automated and manual tools are used to increase the thoroughness of the analysis as well as to increase efficiency and promote the re-usability and standardization of components. The following list of tools are the most common that are used, but may not be all inclusive.
· Standard web browser

· Burp web proxy

Target Systems
This Assessment was conducted in the following environments:
· Test
The following IP Address(es) and/or URL’s were assessed:
· http:// X.X.X.X
Security Assessment Results
While some effort has been made to restrict the application functionality to only authorized users, the security controls currently in place are not sufficient to protect the application data and functionality. Several vulnerabilities allow unprivileged users to gain unauthorized access to privileged accounts and/or bypass access controls. In many cases these vulnerabilities can be chained together to increase the impact and level of exposure.
Findings 1,2 and 3 are part of a vulnerability cluster where each vulnerability increases the severity and impact of the others. Likewise findings 5 and 6 are also part of a vulnerability cluster. Remediating any single vulnerability which is part of a cluster reduces the severity and impact of the others.
Severity 5 (Critical) Findings
Finding 1:
Raw API Exposed
Asset(s) Affected:
http://X.X.X.X/api/raw/

Issue: The raw API is exposed to unprivileged users
Description: The API has no access control to prevent access by unauthorized users. It should not be accessible directly from the web interface and should only be accessed by the application itself after authentication checks have been performed. It has in fact been disabled in the regular configuration for this reason, but it can easily be re-enabled by sending a GET request to the /api/enabledebug url, at which point the Debug menu option shows up on the navigation menu and the /api/raw url becomes available.
[image: image2.png]
The API has no authorization controls and will take actions based on any well formed request. Users can easily generate well formed requests by attempting to perform a prohibited action and saving the base64 encoded request, then pasting it into the “Request” form field of the API Debug interface. The API will then perform the prohibited action on behalf of the user.
[image: image3.png]
This screenshot shows the user attempting to update the payment method details, which is a prohibited action.
[image: image4.png]
This screenshot shows the user inputing the payment change request into the API Debug page.
This screenshot shows the final result.
[image: image5.png]
Recommendations: Remove the ability for the user to access the raw API.
Finding 2:
Password Hashes Exposed

Asset(s) Affected:
http:// X.X.X.X/api/raw
Issue: The Raw API exposes user password hashes
Description: User password hashes are very sensitive information which some attempt has been made to protect by redacting them from showing up in the Users page. However the Raw API exposes them in full unredacted form. This can enable a malicious user to “crack” the hash and reveal the original password which can then be used to login as any user, including the administrator.
[image: image6.png]
Recommendations: Remove the ability for users to view raw password hashes.
Finding 3:
Weak Password Hashing Algorithm

Asset(s) Affected:
http://X.X.X.X/

Issue: User passwords are hashed using the weak MD5 hashing algorithm
Description: Passwords are hashed to provide additional protection in the event that the application is compromised by forcing the attacker to undertake the additional step of cracking the hashes prior to being able to use them to login as another user. The stronger the hashing algorithm, the longer it takes to crack the hashes. The MD5 hashing algorithm is one of the weakest. Additionally the hash function does not use a salt, which makes it even easier for an attacker who has access to MD5 rainbow tables. Practically speaking, an attacker who gains access to these password hashes can crack them in under an hour and quickly turn them into usable passwords for further attacks on the application.
[image: image7.png]
Recommendations: Use a strong hashing algorithm such as scrypt or bcrypt to resist cracking attempts. Additionally use a unique salt prior to hashing so that an attacker will be unable to use pre-computed rainbow tables to crack the hash.
References:
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
Severity 4 (High) Findings
Finding 4:
Cleartext Authentication
Asset(s) Affected:
http://X.X.X.X/login
Issue: The web application allows login credentials to be transmitted over cleartext
Description: The application allows users to connect to it over unencrypted connections. An attacker suitably positioned to view a legitimate user's network traffic could record and monitor the user login credentials in order to impersonate the user or gain unauthorized access to resources. Furthermore, an attacker able to modify traffic could use the application as a platform for attacks against its users and third-party websites.
To exploit this vulnerability, an attacker must be suitably positioned to eavesdrop on the victim's network traffic. This scenario typically occurs when a client communicates with the server over an insecure connection such as public Wi-Fi, or a corporate or home network that is shared with a compromised computer. Common defenses such as switched networks are not sufficient to prevent this.
[image: image8.png]
[image: image9.png]
Recommendations: Applications should use transport-level encryption (SSL/TLS) to protect all communications passing between the client and the server. The Strict-Transport-Security HTTP header should be used to ensure that clients refuse to access the server over an insecure connection.
References:
https://en.wikipedia.org/wiki/Transport_Layer_Security
Finding 5:
Cross-Site Scripting
Asset(s) Affected:
http://X.X.X.X/users
Issue: The web application uses bootstrap v3.3.7 which is known to have cross-site scripting (XSS) vulnerabilities in the data-target, data-template, data-content, data-title, and data-viewport attributes
Description: The Conglomo web application is vulnerable to a stored XSS attack where the attacker can be any user with write access to any form field. In this example the users table containing contact and other personal information for users was poisoned with a malicious javascript. Even though html tags are being properly escaped, javascript can still be saved in the table and will run whenever that user data is viewed by anyone.
XSS allows attackers to inject malicious code into an otherwise benign website. These scripts acquire the permissions of scripts generated by the target website and can therefore compromise the confidentiality and integrity of data transfers between the website and client. Websites are vulnerable if they display user supplied data from requests or forms without sanitizing the data so that it is not executable. Stored attacks are those where the injected script is permanently stored on the target servers, such as in a database, in a message forum, visitor log, comment field, etc.
The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.
[image: image10.png]
Recommendations: Upgrade to the latest version of bootstrap

References:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://snyk.io/test/npm/bootstrap/3.3.7
Finding 6:
Auth Cookie Missing Http Only Flag
Asset(s) Affected:
http://X.X.X.X/
Issue: The capp cookie does not have the Http Only flag set
Description: The web application uses the capp cookie to control the session state. Because it doesn’t have the Http-Only flag, this means a malicious javascript can read the cookie value. This greatly increases the severity of the previous XSS vulnerability because now an attacker can copy the session cookie of a logged in user, including the administrator, and use it in his own session, gaining access to the compromised account.
[image: image11.png]
Recommendations: Set the Http Only flag on the capp cookie. If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or set by client-side JavaScript. This measure makes certain client-side attacks, such as cross-site scripting, harder to exploit by preventing them from trivially capturing the cookie's value via an injected script.
References:
https://www.owasp.org/index.php/HttpOnly
Severity 2 (Low) Findings
Finding 7:
Debug Console Enabled
Asset(s) Affected:
http://X.X.X.X/
Issue: The debug console is enabled and accessible to all users
Description: The debug console displays detailed information about the web application which would be useful in tailoring an attack. It can be accessed by any user simply by pressing the ~ key. It will show the api requests and responses, which can be fed into the Raw API to facilitate attacks.
[image: image12.png]
Recommendations: Disable debug console
Vulnerability Classifications
Table Vulnerability Severity Scoring
	Severity of Issue
	Severity Level
	Criteria
	Mitigation Plan Date
	Mitigate by Date

	Critical
	5
	Serious and immediate threat to enterprise; confidentiality, integrity or availability of a critical resource could be compromised
	n/a
	Mitigation should commence immediately

	High
	4
	Serious threat to application or critical resource
	optional
	0 – 4 weeks

	Medium
	3
	Moderate threat to application or critical resource
	2 weeks
	0 – 8 weeks

	Low
	2
	Minor threat to application or critical resource
	4 weeks
	4 – 24 weeks

	Informational
	1
	General security information
	n/a
	n/a

Page 18 of 18

